
MORE PATHOLOGIES OF THE VOLUME FUNCTION

Abstract. Suppose that D is a pseudoeffective R-divisor on a smooth projective variety X,
and fix an ample R-divisor A. It has often proved useful to higher-dimensional geometry to
study the growth of h0(X, bmDc+A) as m increases; these provide a numerically-invariant
analog of the Iitaka dimension. Previous work of the second author showed that this growth,
somewhat unexpectedly, might not be even approximately polynomial in m. In this note,
we show that even worse behavior is possible: we describe examples in which this oscillates
between two different powers in m, and in which the exponent is an irrational number. The
results are based on an analysis of the volume function on a certain Calabi–Yau threefold
with a large group of pseudoautomorphisms. The analysis is based on the study nearly
rational geodesics on a hyperbolic three-manifold.

1. Introduction

Suppose that X is a projective variety over an algebraically closed field, and that D is a
Cartier divisor on X. It is a fundamental result that if one considers the spaces H0(X,mD),
the dimension grows more or less polynomially in m:

Theorem 1. Suppose that X is a smooth projective variety over K and that D is a line
bundle on X. There exist constants C1, C2 > 0 and an integer κ so that for all sufficiently
large and divisible m,

C1m
κ < h0(X,mD) < C2m

κ.

It is sometimes convenient to consider a version of this with additional twisting by an
ample divisor: if D is a pseudoeffective R-divisor, one can fix an ample A and examine the
growth of h0(mD + A) as m increases. This variant plays a crucial role in [BCHM], for
example.

It was initially hoped that this growth might also be polynomial in m [?, ?, ?]. However, a
recent example shows that this is not the case in general, at least if one allows the definition
to be extended to the set of R-divisors.

Theorem 2. Let X be a complete intersection of type (1, 1), (1, 1), (2, 2) in P3× P3. There
exists a pseudoeffective R-divisor D on X such that for any sufficiently ample A, there are
constants C1, C2 > 0 so that

C1m
3/2 < h0(bmDc+ A) < C2m

3/2

Although this growth rate is not polynomial, it is not too far removed, and it seems natural
to ask what other kinds of growth are possible. Might the growth always resemble Cmq for
a rational number q, or perhaps a real number q?

In this note we show that even this is too much to hope for. Through an analysis of the
volume function on a certainly Calabi–Yau threefold, we show that the volume function can
exhibit a sort of oscillatory behavior.
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Figure 1. Volume on the Wehler 3-fold

Theorem 3. There exists a smooth threefold X with an R-divisor D so that

lim inf
t→0

log vol(D + tA)

logm
= 1,

lim sup
t→0

log vol(D + tA)

logm
=

3

2
.

If we are lucky, maybe we can get to h0 from this. (The possible issue here is that the
round-down seems like it it could move you by quite a bit wrt the hyperbolic metric, but I
haven’t thought it through.)

Theorem 4. There exists a smooth threefold X with an R-divisor D so that

lim sup
m→∞

log h0(bmDc+ A)

logm
= 2,

lim inf
m→∞

log h0(bmDc+ A)

logm
=

3

2
.

Roughly speaking, the volume oscillates between m2- and m3/2-type behavior. This shows,
in particular, that the invariants κ+

σ and κ−σ introduced by Nakayama really do not coin-
cide [?].

2. Main example

We now consider these quantities in a specific case. Let X be a “Wehler threefold”, a
hypersurface in (P1)4 of type (2, 2, 2, 2). According to Bertini’s theorem and the adjunction
formula, a general such X is a smooth Calabi–Yau threefold. The Picard rank of this variety
is 4, with the real vector space N1(X) spanned by the pullback to X of OP1(1) from each of
the four factors.

The most salient feature of X is that it has a large group of pseudoautomorphisms. For
each of the four projections πi : X → (P1)3 (where 1 ≤ i ≤ 4), there is an associated covering
involution τi : X 99K X. The relevant geometry of Wehler threefolds has been investigated
in detail by Cantat and Oguiso, who provide a precise picture of the group Bir(X) and its
action on N1(X). The action of the pullback τ ∗i : N1(X)→ N1(X) is given with respect to
our basis by matrices of the form
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Theorem 5 (Oguiso–Cantat [?]). The pullbacks τ ∗i are given by

τ ∗1 =


−1 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1

 , . . . , τ ∗4 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1


Algorithm 1. Suppose that D is a divisor on X. To compute the

3. Geodesics

The full birational automorphism group Bir(X) preserves a quadratic form on N1(X),
which is given with respect the this basis by

q =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

As the signature of this form is (1, 3), the subset ∆ ⊂ N1(X) given by

∆ =
{
v ∈ N1(X) : Q(v, v) = 1

}
can be identified with a hyperbolic 3-space H3, and the action of Bir(X) on N1(X) restricts
to an action on ∆. Let Σ = ∆/Bir(X) be a hyperbolic 3-manifold obtained as the quotient;
the ample classes A∆ ⊂ ∆ give a fundamental domain. Since Bir(X) also preserves the
volume function, the volume also induces a function ν : Σ→ R.

Now, suppose that D is a pseudoeffective class in N1(X). Then D lies on the boundary
of ∆, so that Q(D,D) = 0. If A = (1, 1, 1, 1) is an ample class, then one readily checks that
α = 2Q(D,A) 6= 0 and β = Q(A,A) 6= 0.

Fix a divisor D on the pseudoeffective boundary and fix an ample divisor A. We are
interested in the volumes of the divisors D(t) = D + tA. To understand the behavior of the
volume as t approaches 0, we normalize D(t) to lie on the hyperbolic space ∆, by setting:

γ(t) =
D(t)√

Q(D(t), D(t))
=

D + tA√
t(α + βt)

.

(I didn’t normalize to constant speed)
Let δ(t) be the image of γ(t) in Σ = ∆/Bir(X).
We then have

vol(D + tA) = vol
(√

t(α + βt)γ(t)
)

= (t(α + βt))3/2 vol(γ(t))

= (t(α + βt))3/2 ν(δ(t)).

Here δ(t) is a geodesic which wanders around the hyperbolic three-manifold Σ, while ν is
a positive, continuous function on Σ which tends to 0 near the cursps. As a result, when δ
is a geodesic which remains away from the cusps (i.e. for which d(D + tA,A0) is bounded
above, ν(δ(t)) is bounded below and above, so that

C1t
3/2 ≤ vol(D + tA) ≤ C2t

3/2

for some positive constants C1 and C2.
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The interesting case is that in which the geodesic δ(t) approaches the cusps. Since the vol-
ume function (of normed classes) approaches∞ near the cusps, a geodesic which approaches
a cusp will have “unexpectedly large” volume for those values of t at which it is on the cusp.
We next obtain some precise estimates of the behavior of δ(t) near a cusp.

The cusps correspond to divisor classes of the form Nij = Hi+Hj, which satisfy q(Nij) = 0.
These give rise to six cusps on Σ.
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